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Abstract

Apparatus and processes for recognizing and identifying materials. Characteristic spectra are obtained
for the materials via spectroscopy techniques including nuclear magnetic resonance spectroscopy,
infrared absorption analysis, x-ray analysis, mass spectroscopy and gas chromatography. Desired
portions of the spectra may be selected and then placed in proper form and format for presentation to
a number of input layer neurons in an offline neural network. The network is first trained according to
a predetermined training process; it may then be employed to identify particular materials. Such
apparatus and processes are particularly useful for recognizing and identifying organic compounds
such as complex carbohydrates, whose spectra conventionally require a high level of training and
many hours of hard work to identify, and are frequently indistinguishable from one another by human
interpretation. 

Inventors: Meyer; Bernd J. (Athens, GA); Sellers; Jeffrey P. (Suwanee, GA); Thomsen; Jan U.
(Fredricksberg, DK) 

Assignee: University of Georgia Research Foundation, Inc. (Athens, GA) 

Appl. No.: 559649

Filed: July 30, 1990

Current U.S. Class: 702/28; 700/90; 706/20; 706/924 

Intern'l Class: G06F 015/42

Field of Search: 364/413.01,497,498 

References Cited [Referenced By]

U.S. Patent Documents

4875183 Oct., 1989 Graf et al. 

4876731 Oct., 1989 Loris et al. 382/40. 

1 von 28 13.07.99 23:28

United States Patent: 5,218,529 http://patft.uspto.gov/netacgi/nph-Parse...218529'.WKU.&OS=PN/5218529&RS=PN/5218529



Other References

Borman, Stu, "Neural Network Applications in Chemistry Begin to Appear," Chemical &
Engineering News, Apr. 24, 1989, pp. 24-28. 
Fukushima, Kunihiko, "A Neural Network Model for Selective Attention in Visual Pattern
Recognition," Biological Cybernetcs, Oct. 1986, vol. 55, No. 1, pp. 5-15. 
Holley, L. Howard and Martin Karpuls, "Protein Secondary Structure Prediction with a
Neural Network," Proc. Natl. Acad. Sci. USA, Jan. 1989, vol. 86, pp. 152-156. 
Hopfield, John J. and David W. Tank, "Computing with Neural Circuits: A Model,"
Science, Aug. 8, 1986, vol. 233, No. 4764, pp. 233, 625-633. 
Lukashin, A. V., V. V. Anshelevich, B. R. Amirikyan, A. I. Gregerov and M. D.
Frank-Kamenetskii, "Neural Network Models for Promoter Recognition," Journal of
Biomolecular Structure & Dynamics, 1989, vol. 6, pp. 1123-1133. 
Quian, Ning and Terrence J. Sejnowski, "Predicting the Secondary Structure of Globular
Proteins Using Neural Network Models," J. Mod. Biol., 1988, pp. 865-884. 
Scalettar, R. and A. Zee, "Emergence of Grandmother Memory in Feed Forward
Networks: Learning with Noise and Forgetfulness," Parallel Distributed Processing,
Chapter 11, pp. 309-327 (Rumelhart, et al., ed. 1986). 
Sejnowski, Terrence J., Christof Koch, and Patricia S. Churchland, "Computational
Neuroscience," Science, Sep. 9, 1988, vol. 241, No. 4871, pp. 1299-1305. 
Three pages of material promulaged by Sprouse Scientific Systems, Inc. and entitled
"Sprouse Info--Sachem.TM.". 
Thomsen, J. U. and B. Meyer, "Pattern Recognition of the .sup.1 H NMR Spectra of
Sugar Alditols Using a Neural Network," Journal of Magnetic Resonance, 1989, vol. 84,
pp. 212-217. 
Shea, Patrick M., "Detection of Explosives in Checked Airline Baggage using an Artificial
Neural System"; 1989. 
Cortes, C., "A Network System for Image Segmentation" Jun. 1989. 
Bhat Naveen V., "Modeling Chemical Process Systems via Neural Computation" 1990. 
Yates, "Autonomous Explorations System: Techniques for Interpretation of Multispectral
Data" Sprouse Info Sachem. 

Primary Examiner: Hayes; Gail O. 
Attorney, Agent or Firm: Kilpatrick & Cody 

Goverment Interests

This invention was made with government support under Grant/Contract numbers
DE-FG09-85ER13426 and DE-FG09-87ER13810 awarded by the Department of Energy. The
government has certain rights in the invention. 

Claims

What is claimed is: 

1. Apparatus for analyzing and identifying the structure of a particular organic material by recognizing
patterns of information that are characteristic of such materials, the apparatus comprising: 

(a) analytical means for applying energy to the organic material under analysis, sensing
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transformations in the energy imparted by the material, and producing therefrom spectral information
corresponding to the energy transformations and the structure of the material; 

(b) means for digitizing a plurality of incremental portions of the spectral information into digital data;
and 

(c) off-line neural network means for utilizing the digital data to identify the structure of the organic
material under analysis, comprising; 

(i) an input layer comprising a plurality of input nodes, each of which nodes receives the digital data; 

(ii) an output layer hierarchically lower than the input layer comprising a plurality of output nodes, for
indicating and identifying the structure of the material under analysis; 

(iii) a plurality of synaptic connections, each of which connects a node in a hierarchically higher layer
to a plurality of nodes in a hierarchically lower layer and each of which features a synaptic strength
value which has been generated during a back-propagation learning process using spectral data from
organic materials analogous to the organic material under analysis; and 

(iv) each of the nodes featuring a threshold value which has been generated during a
back-propagation learning process using spectral data from organic materials analogous to the organic
material under analysis. 

2. Apparatus according to claim 1 in which each node of the output layer corresponds to an organic
material. 

3. Apparatus according to claim 1 comprising at least one hidden layer hierarchically intermediate the
input and output layers and comprising a plurality of hidden nodes. 

4. Apparatus according to claim 1 in which the neural network means is in the form of at least one
computer program. 

5. Apparatus according to claim 1 in which the nodes are implemented in computer hardware. 

6. Apparatus according to claim 1 in which each of the output nodes corresponds to a carbohydrate
molecule. 

7. Apparatus according to claim 1 in which the off-line neural network means is a forward-feed neural
network having a single hidden layer of hidden nodes. 

8. Apparatus for analyzing and identifying the structure of a particular organic material by recognizing
patterns of information that are characteristic of such materials, the apparatus comprising: 

(a) analytical means for applying energy to the organic material under analysis, sensing
transformations in the energy imparted by the material, and producing therefrom spectral information
corresponding to the energy transformations and the structure of the material; 

(b) means for digitizing a plurality of incremental portions of the spectral information into digital data;
and 

(c) off-line neural network means for utilizing the digital data to identify the structure of the organic
material under analysis, comprising: 
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(i) an input layer comprising a plurality of input nodes, each of which nodes receives the digital data; 

(ii) an output layer hierarchically lower than the input layer comprising a plurality of output nodes, for
indicating and identifying the structure of the material under analysis; 

(iii) at least one hidden layer hierarchically intermediate the input and output layers comprising a
plurality of hidden nodes; 

(iv) a plurality of synaptic connections, each of which connects a node in a hierarchically higher layer
to a plurality of nodes in a hierarchically lower layer and each of which features a synaptic strength
value which has been generated during a back-propagation learning process using spectral data from
organic materials analogous to the organic material under analysis; and 

(v) each of the nodes featuring a threshold value which has been generated during a back propagation
learning process using spectral data from organic materials analogous to the organic material under
analysis. 

9. Apparatus according to claim 8 in which each node of the output layer corresponds to an organic
material. 

10. Apparatus according to claim 8 comprising a plurality of hidden layers of hidden nodes. 

11. Apparatus according to claim 8 in which the off-line neural network means is in the form of at
least one computer program. 

12. Apparatus according to claim 8 in which the nodes are implemented in computer hardware. 

13. Apparatus according to claim 8 in which each of the output nodes corresponds to a carbohydrate
molecule. 

14. Apparatus according to claim 8 in which the off-line neural network means is a forward-feed
neural network having a single hidden layer of hidden nodes. 

15. Apparatus for analyzing and identifying the structure of a particular organic material by
recognizing patterns in spectra that are characteristic of such materials, the apparatus comprising: 

(a) spectroscopy analytical means for applying radiation energy to the organic material under analysis,
sensing transformations in the energy imparted by the material, and producing therefrom spectral
information corresponding to the energy transformations and the structure of the material; 

(b) means for digitizing a plurality of incremental portions of the spectral information into digital data;
and 

(c) off-line neural network means for utilizing the spectral information to identify the structure of the
organic material under analysis, comprising: 

(i) an input layer comprising a plurality of input nodes, each of which nodes receives digital data
corresponding to an incremental portion of the spectral information; 

(ii) an output layer hierarchically lower than the input layer comprising a plurality of output nodes, for
indicating and identifying the structure of the material under analysis; 

(iii) at least one hidden layer hierarchically intermediate the input and output layers comprising a
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plurality of hidden nodes; 

(iv) a plurality of synaptic connections, each of which connects a node in a hierarchically higher layer
to a plurality of nodes in a hierarchically lower layer and each of which features a synaptic strength
value which has been generated during a back-propagation learning process using spectral data from
organic materials analogous to the organic material under analysis; and 

(v) each of the nodes feature a threshold value which has been generated during a back propagation
learning process using spectral data from organic materials analogous to the organic material under
analysis. 

16. Apparatus according to claim 15 in which each node of the output layer corresponds to an organic
material. 

17. Apparatus according to claim 15 in which the material under analysis is a carbohydrate molecule
and each output node corresponds to a carbohydrate molecule. 

18. Apparatus according to claim 15 in which the spectroscopy analytical means is a nuclear magnetic
resonance spectroscopy device. 

19. Apparatus according to claim 15 in which the spectroscopy analytical means is an infrared
absorption spectroscopy device. 

20. Apparatus according to claim 15 in which the spectroscopy analytical means is an x-ray analysis
device. 

21. Apparatus according to claim 15 in which the spectroscopy analytical means is a mass
spectrometer. 

22. Apparatus according to claim 15 in which the spectroscopy analytical means is a gas
chromatograph. 

23. Apparatus according to claim 15 in which the spectroscopy analytical means is ultraviolet
spectroscopy. 

24. Apparatus for analyzing and identifying the structure of a particular carbohydrate material by
recognizing patterns in spectra that are characteristic of such materials, the apparatus comprising: 

(a) magnetic resonance analytical means for subjecting the carbohydrate material under analysis to a
magnetic field and radio-frequency radiation, and producing spectral information corresponding to the
absorption of the radiation and the structure of the material; 

(b) means for digitizing a plurality of incremental portions of the spectral information into digital data;
and 

(c) off-line neural network means for utilizing the spectral information to identify the structure of the
material under analysis, comprising: 

(i) an input layer comprising a plurality of input nodes, each of which nodes receives digital data
corresponding to an incremental portion of the spectral information; 

(ii) an output layer hierarchically lower than the input layer comprising a plurality of output nodes, for
indicating and identifying the structure of the material under analysis; 
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(iii) at least one hidden layer hierarchically intermediate the input and output layers comprising a
plurality of hidden nodes; 

(iv) a plurality of synaptic connections, each of which connects a node in a hierarchically higher layer
to a plurality of nodes in a hierarchically lower layer and each of which features a synaptic strength
value which has been generated during a back-propagation learning process using spectral data from
carbohydrate materials analogous to the material under analysis; and 

(v) each of the nodes featuring a threshold value which has been generated during a back propagation
learning process using spectral data from carbohydrate materials analogous to the material under
analysis. 

25. A method for analyzing and identifying the structure of a particular organic material by
recognizing patterns in spectra that are characteristic of such materials, comprising the steps of: 

(a) subjecting an organic material under analysis to energy in an analytical means; 

(b) sensing transformations in the energy imparted by the material; 

(c) producing spectral information corresponding to the energy transformations and the structure of
the material; 

(d) digitizing a plurality of incremental portions of the spectral information; 

(e) supplying at least one off-line neural network which comprises: 

(i) an input layer comprising a plurality of input nodes, each of which is capable of receiving digital
data corresponding to an incremental portion of the spectral information; 

(ii) an output layer hierarchically lower than the input layer comprising a plurality of output nodes, for
indicating and identifying the structure of the material under analysis; 

(iii) a plurality of synaptic connections, each of which connects a node in a hierarchically higher layer
to a plurality of nodes in a hierarchically lower layer; and each of which features a synaptic strength
value which has been generated during a back-propagation learning process using spectral data from
organic materials analogous to the organic material under analysis; and 

(iv) each of the nodes featuring a threshold value which has been generated during a back propagation
learning process using spectral data from organic materials analogous to the organic material under
analysis and 

(f) applying the digital data corresponding to incremental portions of the spectral information relating
to the material under analysis to the input nodes of the neural network in order to generate at the
output nodes information that is useful to indicate and identify the structure of the material under
analysis. 

26. A method according to claim 25 in which the step of supplying at least one off-line neural network
comprises supplying at least one off-line neural network which includes at least one hidden layer
hierarchically intermediate the input and output layers comprising a plurality of hidden nodes. 

27. A method according to claim 25 in which the steps of subjecting the material under analysis to
energy in a spectroscopy analytical means, sensing transformations in the energy imparted by the
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material and producing spectral information corresponding to the energy transformations and the
structure of the material are performed using a nuclear magnetic resonance spectroscopy device. 

28. A method according to claim 25 in which the steps of subjecting the material under analysis to
energy in a spectroscopy analytical means, sensing transformations in the energy imparted by the
material and producing spectral information corresponding to the energy transformations and the
structure of the material are performed using an infrared absorption spectroscopy device. 

29. A method according to claim 25 in which the steps of subjecting the material under analysis to
energy in a spectroscopy analytical means, sensing transformations in the energy imparted by the
material and producing spectral information corresponding to the energy transformations and the
structure of the material are performed using an x-ray analysis device. 

30. A method according to claim 25 in which the steps of subjecting the material under analysis to
energy in a spectroscopy analytical means, sensing transformations in the energy imparted by the
material and producing spectral information corresponding to the energy transformations and the
structure of the material are performed using a mass spectrometer. 

31. A method according to claim 25 in which the steps of subjecting the material under analysis to
energy in a spectroscopy analytical means, sensing transformations in the energy imparted by the
material and producing spectral information corresponding to the energy transformations and the
structure of the material are performed using a gas chromatography device. 

32. A method according to claim 25 in which the steps of subjecting the material under analysis to
energy in a spectroscopy analytical means, sensing transformations in the energy imparted by the
material and producing spectral information corresponding to the energy transformations and the
structure of the material are performed using an ultraviolet spectroscopy device. 

33. A method according to claim 25 in which the generated information indicates the material under
analysis. 

34. A method according to claim 25 in which the generated information indicates portions of the
material under analysis. 

35. A method for analyzing and identifying the structure of a particular carbohydrate material by
recognizing patterns in spectra that are characteristic of such materials, comprising the steps of: 

(a) subjecting a carbohydrate material under analysis to energy in a spectroscopy analytical means; 

(b) sensing transformations in the energy imparted by the material; 

(c) producing spectral information corresponding to the energy transformations and the structure of
the material; 

(d) selecting portions of the spectral information which are desired for use in identifying the structure
of the material; 

(e) digitizing a plurality of incremental portions of the selected spectral information; 

(f) supplying at least one off-line neural network which comprises: 

(i) an input layer comprising a plurality of input nodes, each of which is capable of receiving digital
data corresponding to an incremental portion of the spectral information; 
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(ii) an output layer hierarchically lower than the input layer comprising a plurality of output nodes, for
indicating and identifying the structure of the material under analysis; 

(iii) at least one hidden layer hierarchically intermediate the input and output layers comprising a
plurality of hidden nodes; 

(iv) a plurality of synaptic connections, each of which connects a node in a hierarchically higher layer
to a plurality of nodes in a hierarchically lower layer; and each of which features a synaptic strength
value which has been generated during a back-propagation learning process using spectral data from
carbohydrate materials analogous to the carbohydrate material under analysis; and 

(v) each of the nodes featuring a threshold value which has been generated during a back propagation
learning process using spectral data from carbohydrate materials analogous to the carbohydrate
material under analysis; and 

(g) applying the digital data corresponding to incremental portions of the spectral information relating
to the material under analysis to the input nodes of the neural network in order to generate at the
output nodes information that is useful to indicate and identify the structure of the material under
analysis. 

36. A method according to claim 35 in which the step of supplying at least one off-line neural network
comprises supplying at least one feed forward off-line neural network. 

37. A method according to claim 35 in which the steps of subjecting the material under analysis to
energy in a spectroscopy analytical means, sensing transformations in the energy imparted by the
material and producing spectral information corresponding to the energy transformations and the
structure of the material are performed using a nuclear magnetic resonance spectroscopy device. 

38. A method according to claim 35 further comprising the step of deselecting undesired spectral
information that corresponds to impurities in the material. 

39. A method according to claim 35 further comprising the step of normalizing the spectral
information with respect to a predetermined point in the spectrum. 

40. A method according to claim 35 in which the generated information indicates the material under
analysis. 

41. A method according to claim 35 in which the generated information indicates portions of the
material under analysis. 

42. A method for analyzing and identifying the structure of a particular organic material by
recognizing patterns in free induction decay information that are characteristic of such materials,
comprising the steps of: 

(a) subjecting the organic material under analysis to energy in a nuclear magnetic resonance device; 

(b) sensing transformations in the energy imparted by the material; 

(c) producing free induction decay information corresponding to the energy transformations and the
structure of the material; 

(d) selecting portions of the free induction decay information which are desired for use in identifying
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the material; 

(e) digitizing a plurality of incremental portions of the selected free induction decay information; 

(f) supplying an off-line neural network which comprises: 

(i) an input layer comprising a plurality of input nodes, each of which is capable of receiving digital
data corresponding to an incremental portion of the free induction decay information; 

(ii) an output layer hierarchically lower than the input layer comprising a plurality of output nodes, for
indicating and identifying the structure of the material under analysis; 

(iii) a plurality of synaptic connections, each of which connects a node in a hierarchically higher layer
to a plurality of nodes in a hierarchically lower layer; and each of which features a synaptic strength
value which has been generated during a back-propagation learning process using spectral data from
organic materials analogous to the organic material under analysis; and 

(iv) each of the nodes featuring a threshold value which has been generated during a back propagation
learning process using spectral data from organic materials analogous to the organic material under
analysis; and 

(g) applying the digital data corresponding to incremental portions of the free induction decay
information relating to the material to the input nodes of the off-line neural network in order to
generate at the output nodes information that is useful to indicate and identify the structure of the
material under analysis. 

43. A method according to claim 42 in which the step of supplying at least one off-line neural network
comprises supplying at least one off-line neural network which includes at least one hidden layer
hierarchically intermediate the input and output layers comprising a plurality of hidden nodes. 

44. A method for analyzing and identifying the structure of a particular organic material by
recognizing patterns in spectral information that are characteristic of such materials, comprising the
steps of: 

(a) subjecting the organic material under analysis to energy in at least two analytical means; 

(b) sensing transformations in the energy imparted by the material; 

(c) producing spectral information corresponding to the energy transformations and the structure of
the material; 

(d) selecting portions of the spectral information which are desired for use in identifying the material; 

(e) digitizing a plurality of incremental portions of the selected spectral information; 

(f) supplying at least one off-line neural network which comprises: 

(i) at least one input layer comprising a plurality of input nodes, each of which is capable of receiving
digital data corresponding to an incremental portion of the spectral information; 

(ii) an output layer hierarchically lower than the input layer comprising a plurality of output nodes, for
indicating and identifying the structure of the material under analysis; and 

9 von 28 13.07.99 23:28

United States Patent: 5,218,529 http://patft.uspto.gov/netacgi/nph-Parse...218529'.WKU.&OS=PN/5218529&RS=PN/5218529



(iii) a plurality of synaptic connections, each of which connects a node in a hierarchically higher layer
to a plurality of nodes in a hierarchically lower layer; and each of which features a synaptic strength
value which has been generated during a back-propagation learning process using spectral data from
organic materials analogous to the organic material under analysis; and 

(iv) each of the nodes featuring a threshold value which has been generated during a back propagation
learning process using spectral data from organic materials analogous to the organic material under
analysis; and 

(g) applying the digital data corresponding to incremental portions of the spectral information relating
to the material to the input nodes of the off-line neural network in order generate information at the
output nodes that is useful to indicate and identify the structure of the material under analysis. 

45. A method according to claim 44 in which the step of supplying at least one off-line neural network
comprises supplying an off-line neural network that includes at least one hidden layer hierarchically
intermediate an input and the output layer comprising a plurality of hidden nodes. 

46. A method according to claim 44 in which the analytical means comprise gas chromatograph and
mass spectrograph means. 

47. A method according to claim 44 in which the off-line neural network contains two input layers of
neurons, one input layer corresponding to mass spectral information and the other input layer
corresponding to gas chromatograph information. 

48. A method according to claim 45 in which the off-line neural network contains a single hidden
layer, and the neurons in the mass spectral information input layer and the neurons in the gas
chromatograph information input layer are each connected to each neuron in the hidden layer. 

49. A method according to claim 45 in which the off-line neural network contains two hidden layers, a
first in which each neuron is connected to every neuron in the mass spectral information input layer
and a second in which each neuron is connected to every neuron in the gas chromatograph
information input layer, and the neurons in each hidden layer are each connected to each neuron in the
output layer. 

50. A method for analyzing and identifying the structure of a particular organic material by
recognizing patterns in spectral information that are characteristic of such materials, comprising the
steps of: 

(a) subjecting the organic material under analysis to a first and a second type of energy in at least one
spectroscopy device; 

(b) sensing transformations in the energy imparted by the material in the device; 

(c) producing a first and second set of spectral information corresponding to the transformations in
the first and second energy types and to the structure of the material; 

(d) selecting portions of the spectral information which are desired for use in identifying the material; 

(e) digitizing a plurality of incremental portions of the selected spectral information; 

(f) supplying at least one off-line neural network which comprises: 

(i) at least one input layer comprising a plurality of input nodes, each of which is capable of receiving
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digital data corresponding to an incremental portion of the spectral information; 

(ii) an output layer hierarchically lower than the input layer comprising a plurality of output nodes, for
indicating and identifying the structure of the material under analysis; 

(iii) a plurality of synaptic connections, each of which connects a node in a hierarchically higher layer
to a plurality of nodes in a hierarchically lower layer; and each of which features a synaptic strength
value which has been generated during a back-propagation learning process using spectral data from
organic materials analogous to the organic material under analysis; and 

(iv) each of the nodes featuring a threshold value which has been generated during a back propagation
learning process using spectral data from organic materials analogous to the organic material under
analysis; and 

(g) applying the digital data corresponding to incremental portions of the spectral information relating
to the material to the input nodes of the neural network in order to generate information at the output
nodes that is useful to indicate and identify the structure of the material under analysis. 

51. A method according to claim 50 in which the step of supplying at least one off-line neural network
comprises supplying at least one off-line neural network which includes at least one hidden layer
hierarchically intermediate an input and the output layer comprising a plurality of hidden nodes. 

52. A method according to claim 50 in which the off-line neural network contains two input layers of
neurons, one input layer corresponding to the first information set and the other input layer
corresponding to the second information set. 

53. A method according to claim 51 in which the off-line neural network contains a single hidden
layer, and the neurons in the first information set input layer and the neurons in the second
information set input layer are each connected to each neuron in the hidden layer. 

54. A method according to claim 51 in which the off-line neural network contains two hidden layers, a
first in which each neuron is connected to every neuron in the first information set input layer and a
second in which each neuron is connected to every neuron in the second information set input layer,
and the neurons in each hidden layer are each connected to each neuron in the output layer. 

55. A method according to claim 50 in which steps (a) through (c) are performed in separate
spectroscopy devices. 

56. A method according to claim 25 in which the generated information corresponds to close
structural relatives to the material under analysis. 

57. A method according to claim 35 in which the generated information corresponds to close
structural relatives to the material under analysis. 

Description

This invention relates to the use of neural networks to analyze and identify particular materials by
recognizing patterns in spectra that are characteristic of such materials. The invention has particular
utility in analyzing and identifying complex organic molecules, such as, for instance, complex
carbohydrate. 
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BACKGROUND OF THE INVENTION 

In general, the incorporation of digital systems into modern analytical instrumentation has generated
immense quantities of data. The increases in the quantity of data collected have not been matched by
corresponding gains in information extraction techniques. An important step in more efficient and
effective information extraction is the development of pattern recognition systems capable of handling
data that are generated by different analytical techniques. 

Researchers commonly use mass, infrared and nuclear magnetic resonance and other spectra in
solving structure elucidation problems of various materials, and particularly organic molecules. The
amount of information produced by these techniques can be overwhelming. The need to extract
information from such large databases has given rise to the development of computerized information
systems. The abilities of these information systems vary from retrieval of stored spectra to pattern
recognition to spectral simulation. The systems that have been developed are based on library search
and interpretative techniques. 

PREVIOUS TECHNIQUES 

The computer-based information systems that use library search methods compare unknown spectra
to each spectrum in a reference library. Each spectrum is typically stored in a reduced form to
expedite the retrieval and comparison process. Systems using library search methods are the most
common type of computer-based information systems available. Some of the earliest systems were
created for libraries of mass spectra, and mass spectral search systems continue to be developed.
Library search systems have also been reported for infrared spectra, and many .sup.13 C-NMR
databases and associated retrieval techniques have been developed. Efforts are underway to create a
database for .sup.13 C-NMR spectra originating from biological sources. 

The power of .sup.1 H-NMR techniques in determining carbohydrate structures has been
demonstrated repeatedly. Databases containing .sup.1 H-NMR spectra have been developed, and
pattern recognition techniques can be applied to 2-D NMR spectra. However, development of
computer-aided library search methods for .sup.1 H-NMR spectra is complicated by the relatively
poor reproducability of the spectra of a given molecule under normal experimental conditions. A
retrieval method for .sup.1 H-NMR spectra based on chemical shifts for spectra acquired under highly
controlled conditions has been developed, for instance, but presently requires standardized conditions.

Systems based on an interpretative approach to structure elucidation use data-structure
representations that differ from library search methods. Database systems developed to assist
researchers in the interpretation of analytical results contain spectral data as well as information such
as how the sample was prepared, its origin, its concentration, etc. This procedural information is
required for the available methods of advanced interpretation of particular spectra for structural
identification. Systems that use interpretative methods for handling chemical information have played
a pioneering role in the evolution of software used in expert system development. Examples are
DENDRAL [see R. K. Lindsay, et al., Applications of Artificial Intelligence for Organic Chemistry:
the DENDRAL Project (1980); D. H. Smith, et al., 133 Anal. Chim. Acta 471 (1981)]; DARC [see J.
E. Dubios, et al., 25 J. Chem. Inf. Comput. Sci 326-33 (1985)]; CASE see C. A. Shelley, et al., 133
Anal. Chim. Acta 507-16 (1981); C. A. Shelley, et al., "Computer Assisted Structure Elucidation," 54
ACS Symposium Series, p. 92 (1977)] and CHEMICS [see H. I. Abe, et al., 1 Comput. Enhanced
Spectrosc. 55-62 (1983); S. Sasaki, et al., Computer Applications In Chemistry, 185-206 (S. Heller,
et al., ed. 1983)]. 

In the oligo- and polysaccharide field, for instance, the .sup.1 H-NMR signals of a glycosyl residue
carry information on the nature of that residue and on the environment of the residue within the
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molecule. The influence of the molecular environment includes the points of attachment of other
glycosyl residues and non-glycosyl substituents to the residue in question. Furthermore, the
orientation in space of the residues in question relative to neighboring residues affects the chemical
shifts of NMR signals of the residue in question. This has been experimentally proven by showing that
the .sup.13 C-NMR chemical shifts of oligosaccharides depend on the conformation of the glycosidic
bonds. This concept has been used to analyze glycosidation shifts of .sup.13 C-NMR spectra of
oligosaccharides which, in turn led to the development of the program CASPER. 

The success of the structural reporter group concept established a similar dependence of .sup.1
H-NMR chemical shifts on the residues close in space. However, the structural reporter group
concept has limitations because it uses only a few of the NMR signals to identify glycosyl residues of
oligosaccharides. The structural reporter group concept fails to work in many circumstances because
the chemical shift for the anomeric proton of a glycosyl residue is affected by changes in the proton's
chemical environment. Even though these analytical tools are helpful in interpreting NMR spectra,
analysis of all of the NMR signals from oligosaccharides is a far more reliable way to fully
characterize their structures. However, it requires great skill, relatively large amounts of highly
purified samples and costly instrument time for analysts to completely assign all the signals of NMR
spectra by available 1-D and 2-D techniques. 

NEURAL NETWORKS 

The ability of artificial neural networks to recognize patterns has recently received much attention.
The underlying theme behind the development of artificial neural networks was an attempt to simulate
the parallel processing of the human brain deduced from the perceived manner by which the brain
recognizes pictures or speech. A variety of neural network architectures and training schemes have
been described and variations in the response behavior of neural networks have been reported. 

A common type of neural network known as a hidden-layer feedforward network consists of an input
layer of neurons or nodes, at least one hidden layer, and an output layer. The neuron layers are linked
via a set of synaptic interconnections that are defined at the design stage of the network. Each neuron
in the input layer is typically connected to each neuron in the hidden layer, and each neuron in the
hidden layer is typically connected to each neuron in the output layer, via a synaptic connection; these
may be physical, electronic connections, or they may be embodied in software, as may be the neurons
themselves, which software operates on conventional digital computers. The network is trained by
presenting the desired response to the output layer of neurons and by simultaneously presenting the
input neuron layer with the patterns that need to be distinguished. Connection strengths are developed
by the network as it uses one of several learning algorithms. After a certain number of training
iterations, information may be presented to the input neurons, which then propagate signals through
the network in a feedforward (afferent) manner ultimately causing the output layer to indicate a
proper response. 

Neural networks having no hidden layers, sometimes referred to as "perceptrons," may also be used in
the present invention. Such networks generally produce less reliable information than do networks
with hidden layers when used in applications such as in the present invention, however, perhaps
because hidden layers allow a network to map output patterns to structurally dissimilar input patterns.

The iterative training process of artificial neural networks extracts characteristic information from an
input in order to decide which output will result. Thus, in contrast to a rule-based system in which the
expert must specify the constraints, neural networks select the rules by themselves during the training
process ("learning"). Each neuron has one or more input values, one output value, and a threshold. In
the input layer of neural networks according to the present invention, the output of a neuron is
preferably, but need not be, equal to its input. The output value of any higher level neuron is
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computed according to an activation or squashing function using the input values and its threshold.
The threshold determines "how high" the input to that neuron must be in order to generate a positive
output of that neuron. The connection between two neurons is realized in mathematical terms by
multiplying the output of the lower level neuron by the strength of that connection (weight). The
output response of any hidden layer neuron (o.sub.j) and any output layer neuron is a function of the
network input to that neuron defined by the difference of that neuron's threshold (.theta.) and the
input to it. The value of the input into each hidden or output layer neuron is weighted with the weight
currently stored for the connection strengths between each of the input and hidden layer neurons, and
the hidden and output layer neurons, respectively. Summation over all connections into a particular
neuron and subtracting this sum from the threshold value may be performed according to the
following sigmoid-type Fermi function: 

o.sub.j =[1+exp (.theta..sub.j -.SIGMA..sub.i w.sub.ji * o.sub.i)].sup.-1 ; 

where i and j represent neurons of two different layers with j representing the higher layer;
.theta..sub.j represents the bias value for j layer neuron; w.sub.ji represents the strength of the
connection between neuron i and neuron j. Alternatively, sine-type functions may be used to obtain
the desired type of response function for the output of a neuron. A neuron may be considered to be
"turned on", for instance, whenever its value is above a predetermined value such as, for instance, 0.9
and "turned off" with a value of less than another value such as 0.1, and has an undefined "maybe"
state between those values. The desired output pattern for each input pattern is defined by the user.
The network, through an iterative back-propagation, establishes a set of weights and thresholds for
every neural connection that produces the desired output pattern for the presented input information.
The learned information of a neural network is contained in the values of the set of weights and
thresholds. 

The back-propagation learning process is described in D. E. Rumelhart, et al., Parallel Distributed
Processing, ch. 8, pp. 322-28 (MIT Press, 1986), which is incorporated herein by this reference, and
which represents a portion of the state of the art. The procedure involves a set of pairs of input and
output vectors. The network uses an input vector to generate its own, or actual, output vector. The
actual output vector is compared with a desired output, or target, vector. The synaptic weights are
changed to reduce the difference between the target vector and the actual output vector. The
conventional delta rule is used for this calculation; the weight for a particular synapse or connection
between units is adjusted proportionally to the product of an error signal, delta, available to the unit
receiving input via the connection and the output of the unit sending a signal via the connection. If a
unit is an output unit, the error signal is proportional to the difference between the actual and target
value of the unit; if a hidden layer, it is determined recursively in terms of the error signals of the units
to which it directly connects and the weights of those connections. 

In the back propagation learning process, the input vector is presented and propagated forward
through the network to generate the actual output vector. That vector is compared with the target
vector, resulting in an error signal for each output unit. Weight changes are then computed for all
connections that feed into the output layer. Deltas are then calculated for all units in the next layer,
and the process is repeated. 

Other artificial neural network schemes (ANS) include nonlinear networks as described in the works
of Stephen Grossberg, including, for instance, S. Grossberg, Neural Networks, (1987). These allow
unsupervised learning and perhaps more closely simulate cognitive processes of the human brain than
the back-propagation off-line networks described above. Such procedures typically use bidirectional
feedback between mathematical models of short- and long-term memory to determine the connection
strengths between the neurons, and thus allow self-stabilizing adaptive pattern recognition in response
to complex real time nonstationary input environments, in distinction to the back propagation, off-line
techniques described above. ("Off-line" as used in this document means any learning scheme or neural
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network which does not compensate for short- and long-term memory in determining the connection
strengths between neurons or units.) See, S. Grossberg, Nonlinear Neural Networks: Principles,
Mechanisms, and Architectures, lecture at National Science Foundation meeting on Neural Networks
and Neuromorphic Systems, Woburn, Mass. (Oct. 7, 1986). Such networks may serve as an
alternative architecture for use of artificial neural networks for the recognition of materials via their
spectra, but there remains a question as to whether the added complexity is justified in an input
environment which is arguably not real time. Furthermore, supervised learning allows the network to
incorporate and reflect all previously known materials and their corresponding spectra, unlike the
Grossberg-type unsupervised systems. 

In addition to the back-propagation method described above, several other off-line variations of the
learning scheme have been proposed to improve the speed and stability of the training process. These
include stochastic learning, which is said to have superior performance over the steepest-descent
algorithm normally used, and "forgetting" during the learning process to improve the network's ability
to find the global minimum for the weights and thresholds. Recently, feed-forward neural networks
with one hidden layer of neurons have been shown to be effective in speech recognition; the same
architecture shows promise in predicting, from amino acid sequences, the secondary structure of
proteins. Only a small amount of experimental work has been published demonstrating the utility of
neural networks in natural product chemistry. Several attempts have been made to utilize neural
networks to resolve 3-D structural patterns of proteins from their amino acid sequences. Networks
have been designed that can predict with up to 79% accuracy the secondary structure of peptides
from knowledge of their amino acid sequences. L. H. Holley & M. Karplus, 86 Proc. Acad. Natl.
Acad. Sci. USA 152 (1989). The information used to teach the network was the available 3-D
structures and associated amino acid sequences of proteins obtained by X-ray crystal structure
analyses. Neural networks have also been successfully used in locating promotor sites in DNA
sequences, as discussed in A. V. Lukashin, et al., 6 J. Biomol. Struct. & Dynam. 1123-33 (1989). 

SUMMARY OF THE INVENTION 

Techniques and apparatus according to the present invention capitalize on the ability of a neural
network to "learn" (store as synaptic weights and neural threshold values) spectral information
relating to a large number of materials. The network is used in combination with spectrum analysis
devices, the spectral output of which is analyzed incrementally in a manner that allows incremental
spectral data to be presented to the input neurons of the network. The network, whose input and
output neurons are previously "trained" with a number of known spectra and identification data,
respectively, identifies, via its output layer, the material associated with the particular spectral data
presented to the input layer. The neural network can identify in fractions of a second materials whose
identification previously required the expertise and prolonged efforts of graduate level researchers. 

The primary advantage of neural networks over standard library search algorithms is that the neural
network does not require rules defining the experimental variations which may occur. The neural
network approach is potentially more powerful than library searches because different molecules show
different sensitivities towards the variation of experimental conditions. Accommodation for these
variations could easily be implemented into a neural network approach from the training set but is
much more difficult to implement into a normal library search. 

The present invention is particularly useful in the recognition of complex organic structures.
Knowledge of the structures of complex carbohydrates, for instance, is important in biology and
medicine and has become an important topic in the recombinant protein pharmaceutical field. The
pattern-recognition capabilities of the present invention accelerate the pace of carbohydrate structure
analysis by reducing the required labor and, in many cases, reducing the amount of sample required. 

Highly trained personnel and sophisticated equipment are required to determine the primary structure
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of an oligosaccharide, and, even under these conditions, the analysis can take many weeks or months
to accomplish. Scientists often find that the structures of the carbohydrates they are evaluating turn
out to be the same or similar to the structures of molecules that have already been structurally
characterized which results in a great deal of time and effort being wasted. Therefore, an object of the
invention is to make the structural information of NMR spectra of previously characterized molecules
readily available to research scientists. As an example, entry of .about.2000 carbohydrate structures
taken from the literature into a database developed in the Complex Carbohydrate Research Center and
Department of Biochemistry at the University of Georgia in Athens, Ga. revealed after analysis that
only .about.1500 structures were unique. In other words, .about.25% of the structures thought to be
unique in the literature were duplicates. Other efforts to elucidate carbohydrate structure undoubtedly
led to structures that were recognized as duplicates and were, therefore, not added to the literature,
but the wasted effort by the analyst and expense were still incurred. Such duplication of effort occurs
because there is currently no way to determine if the structure of a complex carbohydrate being
characterized has already been described in the literature until the structure of the carbohydrate under
investigation has been fully elucidated. The neural network-driven pattern recognition apparatus and
techniques according to the present invention will allow researchers to determine, at a much earlier
stage during analysis, if the structure they are working on has been characterized previously. 

The elucidation of complex carbohydrate structures often relies heavily on .sup.1 H-NMR spectra, as
they provide a great deal of structural information from a relatively moderate amount (.about.100
nmol) of sample. By contrast, .sup.13 C-NMR spectroscopy requires approximately 100 times more
of the compound. Other analytical techniques such as mass spectroscopic analysis and GC and LC
retention times are also important in elucidating the structure of oligosaccharides, and usually require
even less sample (approximately 10 nmol) than is required for .sup.1 H-NMR analysis. Another
difference between .sup.13 C-NMR and .sup.1 H-NMR spectra lies in the reproducability of the
spectra. .sup.13 C-NMR spectra are much more reproducible than .sup.1 H-NMR spectra because the
carbon atoms are not as strongly affected as hydrogen atoms by changes in the environment. Thus,
normal library search methods are much less suited for .sup.1 H-NMR spectra than for .sup.13
C-NMR spectra. 

The present invention has a number of implications involving the analysis of biologically important
polymers. So far among biopolymers, the structural determination of oligo- and polysaccharides
requires the most effort. There is no automatic or semiautomatic procedure for doing this analysis.
The implementation of neural network analyses of 1-D .sup.1 H-NMR spectra in combination with
chromatographic data could lead to the development of a fully automated system for oligosaccharide
analysis. This could have major impacts on the diagnosis of glycosyl storage diseases and other
enzymatic defects that cause a wrong glycosylation of proteins or lipids. Furthermore, extension of
such techniques may prove to be important for other biopolymers such as proteins, RNAs and DNAs.
Aspects of the invention related to the recognition of mass spectra of partially methylated alditol
acetates could also be extended to other GC-MS methods. 

Artificial neural network-based pattern recognition systems according to the present invention have
been used to identify one-dimensional (1-D) .sup.1 H-NMR spectra of complex carbohydrates Such
networks for recognition of .sup.1 H-NMR spectra can compare the spectral pattern of a newly
recorded compound with spectral patterns stored as synaptic weights and neural threshold values in
the neural network. For instance, software-emulated artificial neural networks can recognize
individual 1-D .sup.1 H-NMR spectra of large oligosaccharides within a set of closely related 1-D
.sup.1 H-NMR spectra. Neural networks can also accommodate the normal imprecisions of .sup.1
H-NMR spectra, including those resulting from differences in chemical shifts due to concentration or
temperature variations, different signal-to-noise (S/N) ratios, variable absolute signal intensities, and
different line widths. The ability to accommodate these variables is critical for a pattern-recognition
technique to be useful for structural analysis under normal laboratory conditions. 
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Neural networks may be used according to the present invention to discriminate between closely
related carbohydrates within a large dataset by using free induction decay (FID) data. A primary
advantage of FIDs is that they can provide a wide range of scaling possibilities. Furthermore, neural
networks may be used according to the present invention to achieve recognition of molecules which
only have close relatives but not identical structures already represented in the knowledge base of the
neural network, such as, for instance, oligosaccharide substructures. Several neural networks, each
designed to accommodate one class or family of oligosaccharide spectra, can be used. 

According to another aspect of the present invention, neural network-based systems may be used to
identify partially methylated alditol acetates (PMAAs) derived from complex carbohydrates from gas
chromatography-electron impact mass spectra. Neural networks can be easily trained to recognize the
electron-impact mass spectra of partially methylated alditol acetates. These derivatives are used to
determine glycosyl linkage positions. Neural networks that include gas chromatographic retention
times of the derivatives in the input data may be used to enhance the recognition of molecular
chirality. Neural network systems according to the present invention have achieved partial recognition
of stereochemical differences from mass spectra--a task not previously achieved by scientists. A
combination of mass spectroscopic information with GC retention times can provide redundancy in
such determination of stereoisomers. Additionally, to optimize the neural network for wide-ranging
experimental conditions, ratios of peak intensities in GC-MS data may be analyzed. 

The ability of neural networks to achieve recognition of partially methylated alditol acetates may be
enhanced by training them with scans from the MS originating from different GC injections. The
variations contained in a training set of MS scans from different GC injections increase the neural
network's tolerance to such variations. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic representation of a neural network which contains an input layer, a hidden layer
and an output layer of neurons. 

FIGS. 2A-2F shows 500 MHz .sup.1 H-NMR spectra of six sugar alditols from which information
was presented to and identified by neural networks as discussed in Example I, below. 

FIGS. 3A-3F shows plots of the synaptic weights of the input layer-hidden layer connections of a
neural network which was trained as discussed in Example I with spectral information from the six
sugar alditols. 

FIG. 4 shows structures of 13 complex oligosaccharides which were identified by neural networks
according to the present invention as discussed in Example II. 

FIGS. 5A-5B shows input patterns generated from 500 MHz .sup.1 H-NMR spectra of structures 9
and 12, as illustrated in FIG. 4. 

FIGS. 6A-6B shows examples for the generation of input patterns as shown in FIG. 5, and as
discussed in Example II, from the spectra of structures shown in FIG. 4. 

FIG. 7 shows a synaptic weight plot of the connections between input neurons and one hidden layer
neuron of a neural network (NN-1) discussed in Example II. 

FIG. 8 shows structures of 22 partially methylated alditol acetates which were identified by neural
networks according to the present invention as discussed in Example III. 

FIGS. 9A-9B shows selected mass spectra of structures 21 and 29 shown in FIG. 8. 
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FIG. 10 shows a synaptic weight plot of the connections between input neurons and one hidden layer
neuron of a neural network discussed in Example III. 

FIG. 11 shows structures of 14 complex oligosaccharides entered into a neural network training set
according to the present invention, and two test materials whose close relatives among the
oligosaccharides were identified. 

DETAILED DESCRIPTION 

Example I 

Alditol spectra were subjected to analysis using neural networks according to the present invention as
a preliminary procedure because alditols exhibit a variety of characteristics including (i) highly
degenerate spectra (i.e. galactitol), (ii) different numbers of protons in some of the spectra (i.e.
pentitols vs. hexitols), (iii) spectra with all of the signals resolved and of first order (i.e. arabinitol),
and (iv) spectra with no individually resolved signals of high order (i.e. ribitol). 

A three-layered feedforward neural network using a back propagation learning scheme as described in
D. E. Rumelhart, et al., Parallel Distributed Processing, ch. 8 (MIT Press, 1986) was used. The
architecture is shown in FIG. 1. The network includes an input layer of 400 input neurons, each of
which feed a layer of 6 hidden neurons, which in turn feed an output layer of 6 output neurons. The
input layer neurons simply transmit their input values as output. The output o.sub.j of the j'th hidden-
or output-layer neuron is given by the logistic semilinear activation function: 

o.sub.j =[1+exp (.theta..sub.j -.SIGMA..sub.i w.sub.ji * o.sub.i)].sup.-1 ; 

where i and j represent neurons of two different layers with j representing the higher layer;
.theta..sub.j is a bias value for neuron j, and w.sub.ji represents the synaptic strength or weight of the
connection between neuron i and neuron j. The output of neuron "j" is the result of applying the
sigmoid-type threshold function corresponding to the neuron to the input received by the neuron from
each neuron in the hidden layer. o.sub.j approaches 1 when the net input is positive ("on") while
o.sub.j approaches 0 when the net input is negative ("off"). For each spectrum presented to the
network, a single unique output layer should be turned "on" and all the others turned "off." The
knowledge of the network is embedded in the values of the weights and biases, and teaching the
network is reduced to finding a set of weights and biases that perform the required mapping of a set
of input patterns onto a corresponding set of target output patterns. 

A back propagation training scheme was used, that is, supervised training based on repeated
presentation to the network of a set of learning patterns together with the desired output responses.
At the beginning of a learning session, the weights and thresholds were initialized with random
numbers. For each pattern presented, the error back-propagation rule defined a correction to the
weights and thresholds, using a gradient descent method as described in chapter 8 of the Rumelhart
reference cited above to minimize the square sum of the differences between target and actual
outputs. The training proces was repeated iteratively until the difference between target and actual
output fell below a predetermined specified level. 

A total of 24 spectra were produced from the free induction decays (FIDs) of six sugar alditols, in
which four sets of each spectrum were obtained at a different line width, level of noise, apodization,
and/or baseline correction. The variation of noise level, line width, and baseline distortion represented
differences commonly found in experimentally obtained .sup.1 H-NMR spectra. The 500-MHz .sup.1
H-NMR spectra of six sugar alditols were recorded at a concentration of 6 mg in 0.5 ml 99.98%
D.sub.2 O, using acetone as an internal reference (2.2 ppm). The six FID's were recorded in 8K

18 von 28 13.07.99 23:28

United States Patent: 5,218,529 http://patft.uspto.gov/netacgi/nph-Parse...218529'.WKU.&OS=PN/5218529&RS=PN/5218529



datapoints using a spectral width of 2500 Hz, which resulted in a digital resolution of 0.61 Hz per
point. Eight scans were collected for each FID. From the six FID's, a total of 24 spectra were
produced, as four sets of six spectra, each set having a different apodization and/or baseline
correction. The spectra were transferred to an IBM PC, from the ASPECT 3000 computer of the
Bruker AM 500 spectrometer which was used, via the SPECNET facility of the standard
spectrometer software. The PC employed a conventional communication program and handled all
subsequent data processing. 

A reference learning set of 24 patterns was created, taking from each spectrum 400 datapoints in the
range 4.0 to 3.5 ppm, at a fixed distance relative to the acetone line. The target output patterns were
also included, and all patterns were normalized to have an integrated intensity proportional to the
expected number of protons. The spectra of the six alditols included in the learning set are shown in
FIG. 2. 

The network converged to the desired solution in less than 30 presentations of the 24 patterns. The
presentation sequence was randomized, and for each pattern the weight corrections were applied only
if the discrepancy between the actual and target output pattern exceeded the specified level of
accuracy. This method enhanced the rate of convergence, presumably because the weights were
allowed to adjust more freely for patterns not yet learned, while avoiding corrections for patterns
already learned with sufficient accuracy. Each output layer neuron was required to have an output
value of 0.9 in order to be "on" and a value of 0.1 to be "off." The computations required to learn the
24 spectra were not demanding; a typical learning session was completed in about 20 minutes, using a
6-MHz IBM PC AT with a math coprocessor. 

Each of the six hidden layer neurons was connected to all of the input layer neurons, thus "seeing" the
whole spectrum. As a result, the synaptic weights of the connections between each input layer and
each hidden layer neuron were critical in determining which spectral features the network used to
identify a particular alditol (although the synaptic weights of the hidden and output layer neurons
obviously also played a part in such identification). Plots of the 400 synaptic weights for the input and
hidden layer connections for each alditol, which correspond to the FIG. 2 spectra for the alditols, are
shown in FIG. 3. The patterns clearly share common features with the alditol spectra shown in FIG. 2.
The hidden layer neurons may thus be considered as detectors for specific spectral features, as for
example, a combination of multiplets. The nature of the sigmoid-type neuron output equation is such
that when spectral features of the spectrum coincide with similar features in the synaptic weight
pattern, the hidden-layer neuron in question tends to turn "on." The output layer combines the partial
evidence from the hidden layer feature detectors to perform the final identification of the individual
spectra. 

The training process was repeated approximately twelve times, using different sets of initial random
weights. In all cases, the weight patterns that connect the hidden layer neurons to the input neurons
showed similar recognizable features as presented in FIG. 3; i.e. subsets of the multiplets that form the
original spectra. Thus, the characteristic signals of the individual spectra were represented in different
weight traces. Experiments were also performed with networks having from three to ten neurons in
the hidden layer. In each case, the network was able to learn. However, learning was very slow when
there were only three hidden-layer neurons. 

The neural network was tested for sensitivity to distortions in the learned alditol spectra. The learning
set of 24 spectra was used to create four additional sets of 24 test spectra. The first such set was
obtained by shifting each data point one increment left. The second set was obtained by shifting each
data point one increment right. The third set included added Gaussian-distributed noise, and the
fourth set was obtained by reducing the intensity by a factor of two. The Gaussian noise resulted in a
reduction of the signal-to-noise ration of the strongest lines in the spectra from approximately 250:1
to 35:1. 
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The four sets of distorted test patterns were presented to the network which had been "trained" with
the original set of 24 unadulterated spectra. The network correctly identified all of the left-shifted
spectra of the first test set. Two of the patterns from the right-shifted second set failed to turn on the
proper output neuron fully, but only by a margin of 0.01 from the required 0.9 value (0.9.+-.0.1). The
network correctly identified all noisy set three spectra. It failed, however, to identify correctly any of
the spectra from the fourth set, instead showing intermediate output neuron values in the range 0.64
to 0.79. The network when trained with the four test sets (in addition to the original spectra) in a new
training session, readily identified all four test sets of spectra correctly. 

Example II 

Complex oligosaccharides were analyzed using a large neural network. For purposes of this
discussion, complex .sup.1 H-NMR spectra are defined as having only a small percentage of the
signals separated into individually resolved NMR multiplets, i.e. most of the signals in the spectra are
contained in a region of strong overlap, called the hump region (see FIG. 5). This kind of spectrum is
typical for most biologically important molecules such as DNA, RNA, proteins, and complex
oligosaccharides. All these molecules are composed of many closely related structures that give rise to
very similar resonances in NMR spectra. NMR spectra of xyloglucans were chosen (FIG. 5) in order
to explore the abilities of artificial neural networks to recognize these spectra. The molecules in the
test set were composed of three to twenty glycosyl residues. A number of the residues in each
xyloglucan oligosaccharide are identical, e.g. eight .beta.-(1-4) linked glycosyl and six .alpha.-(1-6)
linked xylosyl residues in structures 10-13 as shown in FIG. 4. Thus, major portions of the NMR
spectra of these compounds are determined by repetitive residues which lead to high degeneracies in
the .sup.1 H-NMR spectra. 

The 500 MH.sub.z .sup.1 H-NMR spectra of compounds 1-13 as shown in FIG. 4 were previously
recorded without any idea that they would be analyzed by neural networks according to the present
invention. Accordingly, no special care was taken or needed when recording the spectra for training
the artificial neural network. The free induction decay (FID) files of these previously recorded spectra
were retrieved from tape and processed in the following way: First, the FID files were Fourier
transformed without any preprocessing. The resulting spectra were then normalized to a digital
resolution of 0.5 H.sub.z /point by interpolation of the spectral intensities. The chemical references of
all spectra were also normalized to the same standard (acetone at 2.225 ppm). Three spectral regions
from 1.15-1.34 ppm, 3.23-4.68 ppm and from 4.90-5.37 ppm covering all the signals in the .sup.1
H-NMR spectra of structures 1-13 as shown in FIG. 4 were extracted from the spectra and combined
into patterns that were presented to the input neurons of the neural network (see FIG. 6). The total
width of these combined regions was 1056 H.sub.z. The residual water signal at 4.748 ppm was
replaced by zeros to avoid problems with its greatly varying intensity and width. The signals within
the spectra were normalized such that the intensities of all lines belonging to one selected hydrogen
atom summed to 1. This process requires the identification within the spectra of only one peak that
belonged to a signal with known multiplicity and which is not overlapped by other signals. Usually,
one of the anomeric signals was chosen to scale the intensity of the spectra. This approach feeds, for
all spectra, approximately the same relative intensity into the neural network. Previous work
suggested that the networks are not particularly sensitive to changes in intensities, which implies that
the use of peak integrals is not required for scaling purposes. Examples of the neural network input
patterns that were obtained after the preprocessing of the .sup.1 H-NMR spectra are displayed in FIG.
6. 

A standard feed forward-back propagation neural network as mentioned above and described in D. E.
Rumelhart, et al., Parallel Distributed Processing, ch. 8 (MIT Press, 1986) was used for the analysis
of the spectra of the 13 xyloglucan oligosaccharide structures. Several architectures of artificial neural
networks were trained, which differed in the number of input, hidden layer and output neurons. The
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"on" state of an output neuron was defined to be any neuron with an activation of 0.9.+-.0.1.
Similarly, the "off" state of an output neuron was defined to be any neuron with an activation of
0.1.+-.0.1. The neurons were considered to be in an undefined state with activation values between
0.2 and 0.8. 

The initial training set containing the NMR spectra of oligosaccharides 1-13 was used to train a neural
network with 2113 input, ten hidden layer and thirteen output neurons (NN-1). Each input neuron
represented 0.5 H.sub.z of the NMR spectral (total 1056 H.sub.z). After training of the network,
plots of the synaptic weight of input and hidden layer neuron connections were used to analyze the
convergence properties of the network. A sample weight plot of such synaptic weights for one hidden
layer neuron of NN-1 is shown in FIG. 7. It is apparent that both the anomeric region (from 4.47 to
5.37 ppm) and the hump region (from 3.23 to 4.21 ppm) contribute heavily to the recognition
capabilities of the neural network. If the corresponding signals are present in the input patterns,
positive weights increase the activation of hidden layer neurons whereas negative weights contribute
to turning the hidden layer neurons off. Comparisons of all input layer-hidden layer connection
synaptic weight plots for each hidden layer neuron with the actual spectra revealed that almost all
signals in the original .sup.1 H-NMR spectra of structures 1-13 were utilized by the neural network to
activate or to deactivate the hidden layer neurons. 

.sup.1 H-NMR spectra of the same compound are no more reproducible than the data of other
analytical techniques. It was expected that training the neural network with deliberately imperfect data
would increase the ability of the neural network to correctly recognize spectra which inherently
contain similar imperfections. In order to test this hypothesis, "fuzziness" (that is, minor variations in
the input data) was introduced into the training set. This was accomplished by generating four
additional copies of each spectrum. One copy contained the original spectrum with all signals shifted
0.5 H.sub.z to the right, one 1.0 H.sub.z to the right, one 0.5 H.sub.z to the left and one 1.0 H.sub.z
to the left. Such procedures enable neural networks to be more tolerant of the minor changes in
chemical shifts and line width that occur when spectra of the same molecule are obtained at different
times or on different instruments. The initial training set of thirteen spectra was expanded to 65 by
including the fuzzy spectra. This dataset was then used to train NN-1. Once again the neural network
converged and was able to recognize the spectra of structures 1-13. The root mean square error of the
trained neural network was 0.03 indicating an excellent agreement between target and actual output
patterns. 

The success of the structural reporter group concept demonstrates that signals whose chemical shifts
are outside the poorly resolved hump region (.about.3.2 to 4.2 ppm) can be used to successfully
recognize the spectra of a variety of oligosaccharides. The ability of neural networks to use only the
structural reporter group signals on the one hand and only the hump region signals on the other hand
in order to recognize spectra was accordingly tested. The .sup.1 H-NMR spectra of structures 1-5
was split into two sets. One set contained only the signals of the structural reporter groups of
structures 1-5, that is, the regions from 4.47 to 5.37 ppm and from 1.15 to 1.35 ppm. The second set
of partial spectra of structures 1-5 contained only the signals in the hump region, that is from 3.23 to
4.21 ppm. The spectral resolution was maintained at 0.5 H.sub.z /input neuron. A neural network
with 1003 input, 5 hidden, and 5 output neurons was used for the structural reporter group region,
and a neural network with 981 input, 5 hidden, and 5 output neurons was used for the hump region.
Even with only these partial data sets, both neural nets converged and were able to recognize each of
the spectra. This was expected for the structural reporter group region; the result with the hump
region was less intuitive and very instructive. This result strongly suggests that trained artificial neural
networks can discriminate between spectra--even if trained with NMR spectral information that shows
few, if any, evident differences to the human observer. Although it was not obvious that artificial
neural networks could discriminate between the poorly resolved signals in the hump region, it is
apparent that the hump region contains the information necessary to discriminate between
oligosaccharides. The result means that the artificial neural network is better able to achieve this goal
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than humans. 

It became evident from comparison of these network models to other network models with three
(NN-2) or ten hidden (NN-3) layer neurons, respectively, that the `signal to noise` ratio of the weight
patterns as represented in FIG. 7 increased with decreasing number of hidden layer neurons, which
can affect recognition stability and discrimination power of the neural networks. 

This example thus establishes that a feedforward propagation artificial neural network is able to
distinguish between the .sup.1 H-NMR spectra of oligosaccharides that differ by only one glycosyl
residue out of 20. A neural network of the type described can thus form the core of a pattern
recognition system to recognize .sup.1 H-NMR spectra. In contrast to traditional rule-based expert
systems, neural networks discriminate between spectra without requiring the researcher to
"hard-code" a set of rules. Teaching new spectra to the network involves adding the new spectra to
the learning set and repeating the learning process. These results suggest that neural networks can be
used to recognize the very complex .sup.1 H-NMR spectra of most if not all biologically interesting
complex carbohydrates or other materials or compounds of interest. 

Example III 

Structure elucidation of a complex oligosaccharide structure normally begins with the determination
of its glycosyl-residue and glycosyl-linkage composition. Analysis of the glycosyl-linkage pattern is
made by comparison of the gas chromatographic retention times and electron impact mass spectra of
the partially methylated alditol acetate derivatives (PMAAs) of the glycosyl residues. Glycosyl-linkage
analysis involves the per-O-methylation of the oligosaccharide being analyzed, followed by hydrolytic
cleavage of its glycosidic linkages in order to generate a mixture of partially methylated
monosaccharides. The carbon atoms previously involved with other glycosyl residues or ring
formation now carry hydroxy functions, while the carbon atoms in the original oligosaccharide that
had free hydroxyl group now are substituted with O-methyl groups. Reduction of the partially
methylated monosaccharides with sodium borodeuteride yields the corresponding alditols carrying a
deuterium atom at the former aldehyde or keto function. Subsequent acetylation protects the
unsubstituted hydroxy functions with O-acetyl groups. 

Gas chromatographic separation of the resulting partially methylated alditol acetates (PMAA)
followed by an electron impact mass spectrometric analysis of the individual PMAAs allows the
location of the O-methyl and O-acetyl substituents to be ascertained. Discrimination between
stereoisomers (e.g. glucitol, galactitol and mannitol) is achieved by comparison of GC retention times
to those of known PMAA derivatives. In other words, the mass spectrum is used to identify the parent
alditol without taking the stereochemistry into account and the gas chromatographic retention time is
subsequently used to assign the stereochemistry of the molecule. 

Chemical analysis of the glycosyl-residue and glycosyl-linkage has the advantage over NMR
spectroscopic analysis in that a much smaller quantity (.about.10 ug compared to .about.200 ug) of
the oligosaccharide is needed. Such interpretation of the spectral data is not only costly in terms of the
amount of sample required but is both complicated and time-consuming. This is true because the total
number of different PMAA structures that can be obtained from one hexose is 64. Taking all different
naturally occurring sugars into account, spectroscopists must determine from several thousand
possible PMAA derivatives which molecule is present. 

Accordingly, the mass spectra of PMAA derivatives of xylitol, arabinitol, rhamnitol and fucitol (see
FIGS. 8 and 9) were used to test the ability of an artificial neural network to recognize the mass
spectra obtained by combined GC-MS. An HP 5890 gas chromatograph with a 5970 mass selective
detector was used for separation and quantitation of the compounds. The spectra were recorded and
stored on an HP 9000 series 200 workstation. They were subsequently transferred to a DECstation
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3100 for further processing. In order to use the spectra as input to the neural network, all data within
each spectrum were normalized relative to the largest peak in the spectrum. Each mass to charge ratio
was rounded to an integer number. Sets of network input patterns were then generated by mapping
the normalized abundance for each mass number in a spectrum to the corresponding position of an
input neuron. Spectra typical of those used in this study are shown in FIG. 9. 

The neural network software used was the back propagation program of Rummelhart and
McClelland, described in J. McClelland and D. E. Rumelhart, Explorations in Parallel Distributed
Processing (MIT Press, 1988), which is incorporated herein by this reference. All the network models
reported here consisted of an input layer of 400 neurons, a hidden layer of either 5, 15 or 25 neurons
and an output layer of 22 neurons. 

An initial set of patterns with which to train the network was created by selecting the mass spectra of
twenty-two well resolved peaks from the chromatographic data of four different PMAA mixtures. The
structures of these molecules are shown in FIG. 8. This set included six pairs of epimeric molecules
(e.g. compounds 14 & 34, 16 & 35, 22 & 28, 23 & 31, 25 & 32 and 27 & 33 of FIG. 8. Each
chromatographic peak produced two to five MS spectra of the single PMAAs which resulted in a
training set of 66 input patterns for the 22 different PMAAs. This training set was used successfully to
train a network of 400 input neurons, 25 hidden neurons and 22 output neurons to recognize each of
the 22 PMAAs including the epimeric pairs. 

In order to increase the tolerance of the neural network to variations in the spectra, another training
set was generated with variations in peak intensities deliberately included. This was accomplished by
including copies of the original spectra where the copies differed from the original in that each peak in
each spectrum was multiplied by a random factor ranging from 0.5 to 1.5. The network was
successfully trained to recognize all 22 compounds in this set. When spectra that were omitted from
the training set were presented to the trained network, eighteen of the twenty two compounds were
recognized. The test spectrum for structure 14 activated its isomeric partner 34. When the spectrum
from either structures 25 or 32, which are isomers, was presented, the network outputs for both 25
and 32 were partially activated. A single input pattern failed to cause correct identification of the
proper molecule. 

The ability to identify partially methylated alditol acetates as well as to discriminate between most of
the stereoisomers from mass spectra demonstrates the powerful spectrum recognition and
identification capabilities of artificial neural networks. These results show that neural networks can be
trained to identify all naturally occurring partially methylated alditol acetates. While the
above-described efforts have been focused on PMAAs, this neural network-based technique is readily
adaptable to the mass spectra of other types of compounds. This approach can be generalized to
provide researchers in different laboratories with the ability to build their own neural networks by
forming training sets with their own mass spectra, training the neural network and these sets, and
subsequently using the neural network to identify the mass spectra of molecules pertinent to their
work. Additionally, the researcher would get answers from the neural networks almost
instantaneously, as compared to longer library searches. 

Discussion 

Neural networks are clearly useful to recognize very complex spectra and to deal with variations
occurring in experimental spectra while still maintaining the necessary discrimination between spectra.
They also tolerate changes in chemical shifts of individual signals, changes in noise, and changes in
line width and line shape. 

Enhancing Pattern Recognition of NMR Spectra 
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In order to accomplish the foregoing tasks effectively, however, neural networks must be able to
accommodate changes in several variables without affecting the recognition of the spectra. The
variable parameters include the intensity of the spectrum (sample size), the digital resolution of the
spectrum, the presence of solvent signals, the presence of signals from impurities (e.g. buffers),
background noise, line width of the signals, and the presence of internal standards. The
above-described examples show that neural networks can cope with at least some of these spectral
variables: moderate variations in noise levels, chemical shifts, and intensities. Changes in absolute
intensities may be handled by normalizing the spectra before they are presented to the neural network.
Difficulties with S/N ratios can be minimized by including noise in the neural network's training set.
The tolerance of the neural network to the presence of solvent signals of varying intensity or residual
signals from buffers is less certain. One way to circumvent this problem will be for users to delete
solvent signals from the original spectrum before presenting that spectrum to the trained neural
network. A similar approach may be needed in order to solve problems with residual signals from
buffers. In situations where elimination of solvent and impurity peaks involves the removal of a signal
that is part of the target molecule, the result may be reduced ability of the neural network to recognize
the spectrum. However, this will be minimized by inclusion of the spectrum without the solvent or
impurity signals in the training set. 

The presence of different internal standards in experimental spectra and variations in digital resolution,
that is the frequency difference of successive points in the experimental spectrum, must be solved in
other ways. The difficulties arising from use of different internal standards may be addressed by using
a recently published approach that creates translationally invariant neural networks. See, A. Fuchs and
H. Haken, 60 Biol. Cybern 107 (1988). With this type of neural network the input pattern does not
have to be presented to the same neurons but can be recognized at different input layer positions.
Different digital resolutions of spectra can be addressed by establishing a standard for the data
presented to the network; all spectra that were not recorded at the standard resolution can be easily
preprocessed using an interpolation algorithm to generate the standard resolution. This technique was
in fact used to normalize complex .sup.1 H-NMR spectra to a digital resolution of 0.5 Hz in
preliminary studies. 

Reduction of Data Amount for Input into the Neural Network 

Various techniques may be employed to reduce the amount of data required by neural networks in
order to recognize complex oligosaccharides. As an example, the input layer of such a network must
presently cover the spectral range extending from .about.0.5 to .about.8.0 ppm, that is, a range of
3750 Hz in a 500-MHz NMR spectrum. If the spectrum is fed to the network at its normal digital
resolution of about 0.2 Hz per point, a large number of input neurons (22,500) would be required.
This would require more processing to update the weights and thresholds than with the 2113 input
neurons we have been using. Additionally, the number of hidden layer neurons would need to be
increased in order to cover a large number of possible spectra to be recognized. Since the processing
time for one training cycle is approximately proportional to the product of input and hidden layer
neurons, even if the spectral resolution were reduced to 0.5 Hz/neuron, 7500 input neurons would be
required in order to cover the spectral range of interest. 

A promising alternative approach is to use the network to analyze free induction decays ("FIDs")
rather than transformed spectra. FIDs contain the same information as transformed spectra. The
advantage of using FIDs rather than transformed spectra is that an FID can easily be converted to the
desired number of inputs without losing information from the spectrum. Again, different digital
resolutions could be normalized by interpolation of the data points. Using the FIDs as the training set
for the neural network may avoid some of the problems addressed above (e.g., digital resolution,
shifted spectra due to different internal references), but other problems arise. An FID is composed of
decaying cosine frequencies that result in spectral lines after Fourier transformation. The observed
frequency is the difference between the actual resonance frequency of that nucleus and an internal
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carrier frequency. Thus, if two spectra of the same compound are recorded with different carrier
frequencies, the FID's are completely different. The carrier frequency varies for spectra obtained on
different instruments or even by different operators on the same instrument. This problem may be
addressed by using a spectral preprocessing algorithm that involves (i) a complex forward-Fourier
transformation, (ii) correction of the offset in the transformed spectrum by shifting the spectrum, and
(iii) an inverse Fourier transformation to regenerate the FID with a normalized carrier frequency.
Using a combination of transformed spectra and FIDs as the input to the neural network could prove
to be more powerful than using either of these data separately. 

Most complex carbohydrate .sup.1 H-NMR spectra are recorded on a 500 MHz instrument. Different
spectrometer frequencies impose a problem for the neural network analysis. The pattern of most
peaks within the .sup.1 H-NMR spectra do not change from one carrier frequency to another.
However, the distance between these subpatterns does vary and consequently, this changes the
appearance of the spectra. One alternative is obviously to design the neural network to handle only
spectra recorded at one frequency, such as 500 MHz, as comparing spectra recorded at other
frequencies will complicate the analysis. The problem of different spectrometric carrier frequencies
could be overcome by training the network to recognize the subpatterns of individual H-atoms, e.g.,
singlets, doubles, triplets, or doublet-doublet multiplets. In other words, the network may recognize
the multiplicity of signals which is the most detailed feature of a spectrum. The composition and
location of the subpatterns could then define the chemical structure. For example, the neural network
may be able to be taught with just the isolated multiplet structures found in oligosaccharides before
proceeding to the teaching of monosaccharides and oligosaccharides. This approach, if successful,
would eliminate having a separate neural network for each spectrometer frequency. Such networks
may require more than one hidden layer to handle the individual steps required for detection of
multiple features, however. This approach could also provide substructure information from the
interpretation of the neural networks even in cases where the presented structure does not exactly
match the information stored in the neural network. 

Oligosaccharide structures form families of molecules. Functionally-related molecules often vary in
only a few residues. Neural networks may also be able to recognize the glycosyl residues that make up
an oligosaccharide. This would imply that, even if the structure currently presented to the neural
network is not contained in the knowledge base, the neural network would be able to assign the
glycosyl residues in the oligosaccharide. A way to "prime" the neural network with substructure
information could be derived by using spectra of substructures extracted from the spectra of higher
oligosaccharides as starting weight values rather than randomizing the initial weight set. The number
of substructures would represent a much smaller dataset than the complex structures. One way to test
this "priming" of the neural network is by using the subspectra of all component glycosyl residues
with certain linkage patterns. These subspectra can be extracted from the total spectrum by using 1-D
or 2-D HOHAHA spectra which, upon irradiation of one signal of one subunit, deliver all the signals
within that subunit as a separate trace. Initializing the weights with these subspectra would result in
the activation of the hidden layer neurons connected to this pattern whenever this subunit is present.
A neural network with this feature may have two hidden layers where one hidden layer represents the
substructure information. 

A neural network that can recognize the individual building blocks (glycosyl residues) of all oligo- and
polysaccharides could inform the researcher of the probable glycosyl and non-glycosyl compositions
of the unknown spectrum with the spectral knowledge base of the neural network. No other rapid
analytical procedure can simultaneously provide the glycosyl composition and anomeric
configurations. 

Additionally, networks according to the present invention may be used to generate information that is
useful to indicate and identify materials whose spectra have not been included in the training set, by
indicating close relatives of the material. For example, referring to FIG. 11, presenting the spectrum
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of the mixture of the molecules T1 and T2 shown at the bottom of that figure to the neural network
described in Example 2 above, yielded partial activation (activation levels between 0.2 and 0.8) of
compounds 2, 3, 4, 6a and 6b. Each of those structures deviates only in one glycosyl residue from the
mixture of tested structures T1 and T2. 

Other Network Architectures 

The neural network schemes described above represent supervised learning, because the manager of
the neural network must define the response of the output layer for each spectrum in the training
dataset. In other neural network schemes, like the Adaptive Resonance Theory of Grossberg
discussed above and in G. A. Carpenter and S. Grossberg, 37 Computer Vision, Graphics and Image
Processing 54-115 (1987), the architecture of the network is pre-defined, but the output is not set to a
pre-defined value. 

Data Modification For Enhanced Performance 

A neural network's tolerance to spectral data variations and anomalies and thus its performance can be
enhanced by manipulating the original FIDs of the recorded spectra. Tolerance to variations in line
widths, S/N ratios, and chemical shifts can be obtained by mathematically modifying the original data.
Line width can be modified by changing the decay rate of the FID. S/N ratio can be changed by
adding white noise to the FID. Chemical shifts can be changed by shifting the transformed spectrum
left and right. Presenting such an increased set of spectra to the network in a learning session will
improve its ability to deal with these variations. 

Signal overlap in the hump region of the spectrum increases as the complexity of the molecule
increases. In order to get a satisfactory level of discrimination between closely related structures,
resolution-enhanced spectra may prove to be necessary for neural network analysis. The difference
between normal and resolution enhanced spectra will not be important in the regions of spectra where
the well-defined signals of the structural reporter groups are contained. However, if the complex
hump region of the spectrum can be resolved into individual lines, the spectrum may be more easily
recognized by a neural network. 

Performance 

Neural networks have the advantage of being able to quickly compare (less than 0.5 sec) a newly
recorded spectrum to the information contained in the training set of the network. Thus, a routine
user would rapidly receive answers to queries of the knowledge base contained in the neural network.
The training procedure consumes more time, but that is not a problem for the user, as any new
information added to the neural network is handled by one person, and new spectra could be added in
a net training session during "off-hours". It is likely to be effective to divide the neural networks into
sets of spectra representing different types of complex carbohydrates, i.e., glycoproteins, glycolipids,
glycosaminoglycans, bacterial polysaccharides, fungal polysaccharides, plant cell wall polysaccharides,
and so forth. Each sub-network would have its own associated neural network, each of which could
analyze its respective knowledge base more accurately than one network could store the information
of all combined datasets. The user would always know the source and type of molecule he/she is
tryinq to match and could check against any of the neural networks when required. 

Recognition Of Two-Dimensional Data 

Neural networks also appear to be useful in analyzing 2-D NMR spectra; such analysis is useful
because it can be of great value in cases where the neural network of the 1-D spectra will not be able
to give an unambiguous answer. Although 2-D spectra have the advantage of greater dispersion of the
spectral information, that is, into two dimensions, they require about tenfold more sample to record,
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and sample size is often limited in biological samples. The same neural network concepts described for
1-D spectra may be used to interpret 2-D NMR spectra, but the input layer is extended into two
dimensions. Standard COSY spectra recorded in magnitude mode may be employed so that all of the
NMR signals have positive values. The network may also be used to recognize phase sensitive COSY
spectra. This requires a different set of weights and thresholds in the neural network, because the
network must accommodate both positive- and negative-intensity information in a 2-D contour map.
Use of a neural network in this application is analogous in many senses to use of neural networks to
recognize subpatterns of a photograph that had different positions within the picture. See, e.g., A.
Fuchs and H. Haken, 60 Biol. Cybern. 17, 107 (1988). 

Neural Network-based Pattern-Recognition of Mass Spectra 

It has been discussed above that artificial neural networks can be used successfully to recognize the
mass spectra of partially methylated acetylated alditols. Their efficiency in recognizing PMAAs may
be enhanced in several ways. Including the gas chromatographic retention time in the data presented
to the input neurons is one way of improving the precision of recognition. Two different possibilities
for the implementation of the GC retention times in the neural network exist. A set of input neurons
that represents both the mass spectrum and the GC can be fully connected to the all hidden layer
neurons. With this approach the GC retention time data influences the neural network output
approximately as much as any of the mass spectrometric fragment peaks. If this is too little emphasis
for the GC retention time, another option is to connect the GC related input neurons to a separate set
of hidden layer neurons and connect all hidden neurons fully to the output neurons. The latter
approach assures that the GC data influences the recognition of the spectra as much as the combined
effect of the MS fragment peaks. The implementation of the GC data into the neural network requires
the standardization of the retention times. This may be accomplished by adding a set of five standards
to each GC-MS analysis. Interpolation of the retention times of the peaks between pairs of the
standards provides the normalized retention times for input into the neural network. 

Normally, the mass spectra of PMAAs are interpreted to determine the substitution pattern of
O-methyl and O-acetyl groups but not their stereochemistry. The training set of 22 PMAAs discussed
above contains six pairs of epimers. Each pair of epimers has an identical substitution pattern. From
these six pairs the neural network correctly identified the stereochemistry of four pairs. One epimeric
pair (25 & 32) gave partial activation of the pair's associated output neurons when the spectrum of
either 25 or 32 was presented to the neural network. Thus, one can differentiate between most of the
identically substituted stereoisomers but not all. Comparison of the mass spectra of identically
substituted stereoisomers shows that the use of intensity can be important in order to fully distinguish
between them. The solution seems not to be the interpretation of the intensity ratios of one or two
pairs of peaks but the intensity ratios of the majority of the peaks. However, work on recognizing
.sup.1 H-NMR spectra suggests that neural networks are not very sensitive to changes in intensity. In
order to enhance recognition of intensity differences, a different neural network may be used that has
a two dimensional input. One dimension represents the mass unit of the ion and the second dimension
containing several neurons per mass unit represents the intensity of the peak. Each intensity unit will
represent a certain threshold for the normalized intensity and will be turned on if the intensity of the
peak is higher than the threshold. This should cause the neural network to be more sensitive to the
intensity of the peaks. 

Another way to enhance the ability of the neural network to discriminate different stereoisomers
without adding another input dimension to the neural network is to use highly standardized input data.
Implementation of a two step process, each of which would be based on a neural network, may
achieve the goal. The first step can reveal, by partial activation of the target output neurons, that a
stereoisomer problem exists, which would have to be examined in greater detail in a second step of
neural network analysis. The second step makes use of auto-associative neural networks which are
capable of restoring a partially distorted pattern according to the training set that is included in the
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weights and thresholds of this kind of network. Thus, each stereoisomer can have its own
auto-associative neural network. Activation of the output tells the scientist that this neural network is
recognizing the input pattern as being its target pattern and thus assign the stereochemistry of this
PMAA. As an example, eight separate auto-associative neural networks are needed to find which
stereoisomer is present for hexitols. 

Neural networks capable of interpreting GC-MS data have broad applications including metabolite
studies, environmental trace analyses, and assays of biological samples. The advantage of using a
neural network for the analysis of data rather than a library search is the ease with which the neural
network can be tailored to the needs of the researcher and the speed with which the knowledge base
of the neural network will give an answer. Furthermore, it does not rely on human definition of
deviations within the data from one experiment to the next but incorporates these differences from the
training set. 

The foregoing discussion is provided for purposes of illustration and explanation of embodiments of
the present invention, including a preferred embodiment. The above examples, which discuss the use
of neural networks to identify complex carbohydrate molecules from their spectra, show the principles
that allow such identification of any material or structure from which a spectrum or spectra can be
obtained that can be applied to a neural network. Accordingly, the foregoing discussion is not
intended to be limiting in nature, and it will be apparent that uses of various types of neural networks
(whether one or more, and whether embedded in software, hardware or a combination), various types
of spectra (whether NMR, IR, GC, MS or other), and identification of any conceivable type of
material from which a representative spectrum can be obtained, fall within the scope and spirit of the
invention. 

* * * * *
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